Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.11.584367

ABSTRACT

SARS-CoV-2 still presents a global threat to human health due to the continued emergence of new strains and waning immunity amongst vaccinated populations. Therefore, it is still relevant to investigate potential therapeutics, such as therapeutic interfering particles (TIPs). Mathematical and computational modelling are valuable tools to study viral infection dynamics for predictive analysis. Here, we expand on the previous work by Grebennikov et al. (2021) on SARS-CoV-2 intra-cellular replication dynamics to include defective interfering particles (DIPs) as potential therapeutic agents. We formulate a deterministic model that describes the replication of wild-type (WT) SARS-CoV-2 virus in the presence of DIPs. Sensitivity analysis of parameters to several model outputs is employed to inform us on those parameters to be carefully calibrated from experimental data. We then study the effects of co-infection on WT replication and how DIP dose perturbs the release of WT viral particles. Furthermore, we provide a stochastic formulation of the model that is compared to the deterministic one. These models could be further developed into population-level models or used to guide the development and dose of TIPs.


Subject(s)
Coinfection , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL